Придомовые постройки

Средства автоматизации процесса очистки стоков воды. Автоматизация процессов механической очистки сточных вод. Общие принципы построения автоматизированных систем контроля и управления технологическими процессами

Средства автоматизации процесса очистки стоков воды. Автоматизация процессов механической очистки сточных вод. Общие принципы построения автоматизированных систем контроля и управления технологическими процессами

Автоматизация очистных сооружений

Объем работ по автоматизации в каждом конкретном случае должен подтверждаться экономической эффективностью и санитарным эффектом.


На очистных сооружениях могут быть автоматизированы:

  1. устройства и приборы, регистрирующие изменения технологического режима при нормальной эксплуатации;
  2. устройства и приборы, обеспечивающие локализацию аварий и обеспечивающие оперативные переключения;
  3. вспомогательные процессы в работе сооружений, особенно это относится к насосным станциям (залив насосов, откачка дренажных вод, вентиляция и т. д.);
  4. сооружения обеззараживания сточных под, прошедших очистку.

Наряду с комплексным решением автоматизации целесообразно автоматизировать отдельные технологические процессы: распределение сточных вод по сооружениям, регулирование уровней осадков, ила.


Частичная автоматизация в перспективе должна предусматривать возможность перехода на комплексную автоматизацию всего технологического цикла.


Относительно небольшое внедрение установок автоматического управления в технику очистки сточных вод на предприятиях пищевой промышленности объясняется тем, что большинство очистных станций имеет малую или среднюю производительность, в силу чего капитальные затраты на автоматизацию часто выражаются значительными суммами н не могут быть компенсированы соответствующей экономией эксплуатационных затрат. В перспективе на очистных сооружениях широко будет применяться автоматическая дозировка реагентов и контроль эффективности очистки сточных вод.


Технические требования к автоматизации процессов очистки сточных вод могут быть сведены к следующему:

  1. любая система автоматического управления должна допускать возможность местного управления отдельными механизмами при их осмотре и ремонте;
  2. должна быть исключена возможность управления одновременно двумя способами (например, автоматическое и местное);
  3. перевод системы с ручного управления на автоматическое не должен сопровождаться отключением находящихся в работе механизмов;
  4. схема автомагического управления должна обеспечить нормальное протекание технологического процесса и обеспечивать надежность и точность работы установки;
  5. при нормальной остановке агрегата схема автоматики должна быть готова к следующему автоматическому пуску;
  6. предусматриваемая блокировка должна исключать возможность автоматического или дистанционного пуска после аварийного отключения агрегата;
  7. во всех случаях нарушения нормальной работы автоматизированной установки должен подаваться аварийный сигнал на пункт с постоянным дежурством.
  1. насосные станции — основные агрегаты и дренажные насосы; включение и отключение в зависимости от уровня жидкости в резервуарах и приямках, автоматическое переключение при поломке одного насоса на резервный; подача звукового сигнала в случаях выхода из строя насосных агрегатов н переполнения уровня в приемном резервуаре;
  2. дренажные приямки — сигнализация аварийного уровня;
  3. напорные задвижки насосных агрегатов (при пуске агрегата на закрытую задвижку) — открытие и закрытие, сблокированное с работой насосов;
  4. механические грабли — работа в соответствии с заданной программой;
  5. электроотопнтельные приборы — включение и отключение электронагревательных приборов в зависимости от температуры в помещениях;
  6. приемные резервуары иловых насосных станций — взмучивание сточной жидкости;
  7. напорные трубопроводы иловых насосных станций — опорожнение после остановки насосов;
  8. здание решеток с механической очисткой — включение и отключение механических граблей в зависимости от перепада уровней до и после решетки (засорение решетки) или по временному графику;
  9. песколовки — включение гидроэлеватора для откачки песка по временному графику или в зависимости от уровня песка, автоматическое поддержание постоянного расхода;
  10. отстойники, контактные резервуары — выпуск (откачка) ила (осадка) по временному графику или в зависимости от уровня ила; работа скребковых механизмов по временному графику или в зависимости от уровня ила; открытие гидравлического затвора при пуске подвижной скребковой фермы;
  11. станции нейтрализации сточных вод, хлораторные на х торной извести — дозирование реагента в зависимости от расхода стоков.

Характерной особенностью сточных вод предприятий пищевой промышленности является отсутствие нормы азота и фосфора для биохимических процессов.


Поэтому возникает необходимость в добавлении недостающих элементов в виде биогенных добавок.


Внесение добавок сопряжено со сложностью регулирования объема добавок в зависимости от размеров поступления сточных вод и загрязнений. С учетом изменяющегося расхода сточных вод дозирование биогенных добавок особенно сложно, поэтому для измерения расхода сточных вод институтом Союзводоканалпроект разработана схема автоматизации, в которой применены диафрагмы и поплавковые показывающие дифманометры типа ДЭМП-280 с индукционными датчиками.


Импульсы от дифманометра передаются на электронный регулятор соотношения ЭРС-67, который электрическим исполнительным механизмом типа МГ, воздействуя на регулирующий клапан, приводит расход биогенных добавок в соответствие с размером поступления сточных вод. При этом необходимое расчетное соотношение между расходом сточных вод и биогенных добавок задается регулятору в зависимости от изменения концентрации загрязнений в сточных водах, поступающих на очистные сооружения.

Полная автоматизация процессов водоочистки

Одно из ключевых преимуществ оборудования компании «Осмотикс» – это полная автоматизация процессов очистки.

Полная автоматизация процессов очистки сточных вод – участие человека сведено к минимуму.

Установка очистки управляется промышленным контроллером и функционирует в автоматическом режиме. Все происходящие процессы контролируются и управляются автоматически. Участие человека в работе системы сведено к минимуму.

Для автоматизации очистки стоков «Осмотикс» используются современные промышленные программируемые логические контроллеры производителей Schneider Electric, Omron. На базе данных систем строится отказоустойчивая система управления, в которой предусмотрена обработка аварийных ситуаций, дублирование управляющих сигналов, а так же блокировки, не позволяющие процессу выйти из предела значений, безопасного для обслуживающего персонала и эксплуатации оборудования.

Контроллер по заданному программистами алгоритму выдает управляющие сигналы на блоки управления оборудованием: частотные регуляторы, контакторы, реле и собственные блоки управления оборудования.

На оператора возлагается лишь принятие наиболее важных решений. Для работы оператора существует удобная система управления установкой, позволяющая настраивать ее работу, менять параметры процесса, следить за его состоянием.

Все параметры выводятся на экран управления и доступны оператору в любое время, хотя в автоматическом режиме его вмешательства и не требуется.

На экране управления представлены все основные показатели процесса, а так же выводятся предупредительные и аварийные сигнализации. При срабатывании критических аварийных сигнализаций контроллер автоматически скорректирует режим работы установки для недопущения аварийной ситуации.

Обратная связь с установкой происходит с помощью возвращаемых блоками управления оборудованием сигналов о работе или аварии, а так же с помощью показаний датчиков, передаваемых на контроллер с помощью электрических сигналов.

Создаваемые нами системы автоматизации позволяют с помощью различных интерфейсов, таких как RS-233, ModBus, или единичных электрических сигналов выдавать на системы управления заказчика данные о состоянии работы установки.
Так же существует возможность передачи данных по GPRS каналу на удаленные расстояния. Эти средства позволяют вести удаленный мониторинг и архив режимов работы установки за длительный промежуток времени.

Также ведется автоматическая отчетность, все параметры эксплуатации очистных сооружений «Осмотикс» доступны в виде журнала и при необходимости могут быть распечатаны, что удобно для отслеживания изменений в составе стоков и анализа работы оборудования.

Способ относится к области автоматизации процессов очистки сточных вод, в частности для очистки стоков промышленных предприятий. Способ включает нейтрализацию стоков подачей либо раствора кислоты, либо раствора щелочи для достижения заданного значения рН. Раствор кислоты или раствор щелочи подают в накопитель промышленных стоков. Стоки в зависимости от их концентрации поступают или в электрокоагулятор или в гальванокоагулятор для очистки. Регулирование качества очистки в электрокоагуляторе осуществляется регулированием тока в зависимости от электропроводности стоков. После этого проводят процесс осаждения посредством перетекания стоков из отстойника в отстойник при помощи электрических задвижек. Для ускорения процесса осаждения подают полиакриламид, нерастворенный осадок пропускают через фильтры очистки от соли и фильтры тонкой очистки, затем обезвоживают, а чистые стоки поступают в линию гальванического покрытия. Данный способ позволяет повысить качество очистки промышленных стоков для использования последних в оборотном цикле. 1 ил.

Изобретение относится к области автоматизации процессов очистки сточных вод, в частности для очистки стоков промышленных предприятий.Известен способ автоматического управления процессом коагуляции путем одновременного регулирования расхода кислоты и коагулянта в реактор и контроля цветности воды, при этом одновременно расход коагулянта регулируют в зависимости от цветности воды на выходе реактора и расход кислоты в зависимости от значения рН воды на выходе реактора (SU 1655830 A1, 15.06.1991).Однако этим способом не достигается полное осаждение ионов, что снижает качество очистки.Известен способ автоматического управления процессом очистки стоков промышленных предприятий, включающий измерение рН очищенной воды, регулирование расхода потока в аппарат, при этом измеряют окислительно-восстановительный потенциал очищенной воды, формируют сигнал установки регулятора, сравнивают его с заданным значением произведения, в результате чего формируют сигнал рассогласования и осуществляют регулирование расхода стоков промышленных предприятий при помощи регулятора через аппарат очистки в зависимости от величины рассогласования экспериментально установленной зависимости (RU 2071951 С1, 20.01.1997).Недостатком данного способа является невысокое качество очистки промышленных стоков, невозможность использования их в обратном цикле.Технический результат, достигаемый при реализации данного изобретения, заключается в повышении качества очистки промышленных стоков для использования последних в оборотном цикле.Технический результат достигается тем, что в способе автоматического управления процессом очистки стоков промышленных предприятий, включающем нейтрализацию стоков подачей либо раствора кислоты, либо раствора щелочи для достижения заданного значения рН, согласно изобретению раствор кислоты или раствор щелочи подают в накопитель промышленных стоков, затем стоки в зависимости от их концентрации поступают или в электрокоагулятор или в гальванокоагулятор для очистки, причем регулирование качества очистки в электрокоагуляторе осуществляется регулированием тока в зависимости от электропроводности стоков, после чего проводят процесс осаждения посредством перетекания стоков из отстойника в отстойник при помощи электрических задвижек, для ускорения процесса осаждения подают полиакриламид, нерастворенный осадок пропускают через фильтры очистки от соли и фильтры тонкой очистки, затем обезвоживают, а чистые стоки поступают в линию гальванического покрытия.Сравнение заявляемого изобретения с известными показывает, что применение существующих способов автоматизации не позволяет осуществить очистку сточных вод от ионов тяжелых металлов, что делает невозможным введение очищенных стоков в оборотный цикл предприятия, тогда как в заявляемом изобретении происходит полная очистка сточных промышленных вод, которая ведется ступенчато под контролем различных датчиков, позволяющих на первом этапе нейтрализовать стоки, затем в зависимости от концентрации стоков подвергнуть их электрокоагуляции либо гальванокоагуляции, при этом регулировать качество очистки с помощью переменного электрического тока путем подачи солевого раствора, произвести обезвоживание осадка с последующим его использованием, например, в гальваническом производстве, а отделенную воду использовать в оборотном водоснабжении.Представленная на чертеже схема автоматизации очистки промышленных сточных вод включает: накопитель стоков 1, датчик уровня 2, сигнализатор уровня 3, бак-дозатор кислоты 4, электрическую задвижку 5, бак-дозатор щелочи 6, электрическую задвижку 7, насос подачи стоков 8, электрокоагулятор 9, гальванокоагулятор 10, электрическую задвижку 11, солерастворитель 12, электроблокиратор 13, отстойники 14, бак-дозатор полиакриламида 15, электрозадвижку 16, емкость для очищенных стоков 17, фильтр очистки от соли 18, фильтр тонкой очистки 19, насос подачи очищенных стоков 20, электрозадвижку 21, процессор обезвоживания осадка 22, датчик рН-метра 23, рН-метр регулирующий 24, амперметр постоянного тока 25 выпрямительного агрегата электрокоагулятора, амперметр регулирующий 26, электроды 27, омметр регулирующий 28, датчик уровня 29, сигнализатор уровня 30.Способ реализуется следующим образом.Производственные стоки, например стоки гальванического цеха, подают в накопитель стоков 1. При достижении заданного верхнего уровня в накопителе стоков 1 датчик уровня 2 подает импульс сигнализатору уровня 3, который в свою очередь подает команду на подготовку стоков к очистке с заданным показанием рН. Для этого в накопитель стоков 1 автоматически подается либо раствор кислоты из бака-дозатора 4 посредством электрической задвижки 5, либо раствор щелочи из бака-дозатора 6 посредством электрической задвижки 7. После достижения в накопителе стоков 1 заданного рН, которое фиксируется с помощью датчика рН-метра 23 рН-метром регулирующим 24, рН-метр регулирующий 24 дает команду на включение насоса подачи стоков 8. В зависимости от концентрации стоков последние подают либо в электрокоагулятор 9 (при высокой концентрации), либо в гальванокоагулятор 10 (при средних или низких показателях концентрации), где и происходит очистка стоков. Регулирование качества очистки стоков в электрокоагуляторе осуществляется регулированием тока в электрокоагуляторе путем подачи солевого раствора из солерастворителя 12 в накопитель стоков 1, посредством электрической задвижки 11, управляемой амперметром регулирующим 26, подключенным к выходу амперметра постоянного тока 25 выпрямительного агрегата электрокоагулятора, с целью изменения электропроводности стоков, подающихся в электрокоагулятор 9.Если в процессе очистки значение электрического тока в электрокоагуляторе 9 опускается ниже заданного значения, электрическая задвижка 11 автоматически открывается и ток достигает заданного значения.Если в процессе очистки значение электрического тока в электрокоагуляторе 9 поднимается выше заданного значения, электрическая задвижка 11 автоматически закрывается и ток снижается до заданного значения.Регулирование качества очистки стоков в гальванокоагуляторе осуществляется регулированием подачи стоков в гальванокоагулятор с помощью электрической задвижки 21 в зависимости от концентрации стоков. Контроль и регулирование концентрации стоков в накопителе 1 осуществляется с помощью датчика 27 и омметра регулирующего 28.Для исключения сброса неочищенных стоков из электрокоагулятора 9 в аварийных ситуациях (например, засорение трубопровода при подаче солевого раствора в накопитель стоков 1) включается электроблокиратор 13.В случае, если значение электрического тока в электрокоагуляторе 9 в течение критического времени будет ниже заданного значения, происходит автоматическое отключение насоса подачи стоков 8, при этом загорается аварийное световое табло, подача стоков прекращается.Очищенные стоки из электрокоагулятора 9 и гальванокоагулятора 10 самотеком перетекают в первый отстойник 14, где происходит осаждение нерастворенного осадка. Для ускорения процесса осаждения осадка в первый отстойник 14 из бака-дозатора 15 автоматически подают полиакриламид посредством электронной задвижки 16.Для более полного осаждения нерастворенного осадка предусмотрены 2-й и 3-й отстойники 14, соединенные последовательно между собой.Такая система отстойников позволяет максимально осадить нерастворенный осадок.После проведения процесса осаждения в системе отстойников стоки самотеком поступают в емкость для очищенных стоков 17.Сигнализация уровней в емкости для очищенных стоков 17 осуществляется с помощью датчиков уровня 29 сигнализатором уровня 30.При достижении стоками датчика 29 верхнего уровня в емкости для очищенных стоков 17 происходит автоматическое включение насоса 20, который подает стоки в фильтр очистки от соли 18, а затем в фильтр тонкой очистки 19, откуда чистые стоки поступают в линии гальванического покрытия или в технологические схемы других производств.

Формула изобретения

Способ автоматического управления процессом очистки стоков промышленных предприятий, включающий нейтрализацию стоков подачей либо раствора кислоты, либо раствора щелочи для достижения заданного значения рН, отличающийся тем, что раствор кислоты или раствор щелочи подают в накопитель промышленных стоков, затем стоки в зависимости от их концентрации поступают или в электрокоагулятор, или в гальванокоагулятор для очистки, причем регулирование качества очистки в электрокоагуляторе осуществляется регулированием тока в зависимости от электропроводности стоков, после чего проводят процесс осаждения посредством перетекания стоков из отстойника в отстойник при помощи электрических задвижек, для ускорения процесса осаждения подают полиакриламид, нерастворенный осадок пропускают через фильтры очистки от соли и фильтры тонкой очистки, затем обезвоживают, а чистые стоки поступают в линию гальванического покрытия.

Эпов А.Н. гл. технический специалист

Канунникова М.А. канд. техн. наук,
директор направления «Водоснабжения
и водоотведения» ООО «Домкопстрой»

Наиболее сложной системой управления в очистке сточных вод является управление сооружениями биоочистки с удалением азота и фосфора. В отличие от начала внедрения этих технологий в России в середине - конце 90-х годов, сейчас для реализации данной системы имеется широкий выбор надежных датчиков и контроллеров, позволяющих реализовывать практически любые идеи по автоматизации управления процессами. Благодаря современному оборудованию основные проблемы по созданию систем управления процессом биологической очистки с совместным удалением азота и фосфора в основном решены. С другой стороны, определение конфигурации системы АСУТП для таких технологий в практике проектирования до сих пор является проблемой и предметом совместного творчества проектировщика-технолога, проектировщика АСУ и специалистов заказчика. Решение о конфигурации и объеме системы АСУТП для современных сооружений биологической очистки принимается индивидуально для каждого конкретного проекта. Анализ проектов показывает, что системы управления проектируются как с избыточной сложностью, так и с недостаточной оснащенностью для поддержания технологического процесса.

В ранних редакциях СНиП для принятых в те годы технологий существовали основные рекомендации по объему и конфигурации систем АСУТП. Конечно, сейчас для автоматизации процессов биоочистки они значительно устарели. Можно ли определить типовой состав системы АСУТП для современных станций очистки сточных вод и тем самым избежать ошибок уже на начальной стадии разработки проекта? В зарубежной практике для выполнения таких решений используется опыт работы десятков действующих станций. Подобный подход требует значительных инвестиций в научный анализ при эксплуатации очистных сооружений с биологическим удалением азота и фосфора. В России количество сооружений, построенных по современным технологиям биоочистки, существенно меньше, чем в Европе и ряде других стран. Отсутствует целенаправленное финансирование в изучение их работы, что заставляет искать иные способы для проработки оптимальных решений.

Наилучшим вариантом, предназначенным для реализации таких задач, является математическое моделирование процессов очистки сточных вод и системы АСУТП. Применение данного метода проектирования на базе программного комплекса GPS-X совместной работы системы автоматизации и объектов очистных станций при осуществлении проектов позволяет провести подробную разработку системы, уменьшает сроки пусконаладочных работ и повышает работоспособность системы АСУТП. Это наиболее прогрессивный и эффективный метод, с помощью которого можно проанализировать работоспособность и достаточность предлагаемых решений, определить расстановку датчиков с использованием имитационной модели, выбрать оптимальный вариант схемы и установить алгоритм управления.

Математическое моделирование достаточно широко применяется в России последние 10 лет. C использованием программного комплекса GPS-X при участии авторов были проведены работы по проектированию и анализу эксплуатации свыше 20 станций очистки сточных вод общей производительности более 6 млн м3/сутки.

Накопленный опыт в применении данных методов расчета сооружений с использованием математического моделирования и анализ его результатов позволяет определить состав и предпочтительные схемы управления для процессов биологической очистки и обработки осадка.

Цель, метод и основные правила управления

При разработке типовых решений системы АСУТП биологической очистки следует разделять цели управления и методы реализации.

Цель управления - поддержание определённого показателя на заданном уровне или в заданном диапазоне. Цель диктуется биологией процесса, требованиями к очищенной воде и его экономикой.

Метод реализации - каким образом и где измерять заданную величину, и какими технологическими воздействиями поддерживать. Метод определяется конструктивным оформлением процесса.

Основные цели управления для поддержания процесса совместного биологического удаления азота и фосфора были полностью сформулированы в 2002 г. в руководстве по проектированию и эксплуатации станций с биологическим удалением фосфора . Эти рекомендации использовались в качестве базовых при математическом моделировании систем управления станций с биологическим удалением азота и фосфора. Анализ выполненных работ по моделированию позволяет определить основные правила, соблюдение которых обеспечивает получение оптимальных по конфигурации систем управления процессом.

Правило № 1 - для стабильного удаления фосфора необходим контроль процесса удаления азота. Цели контроля:

защитить анаэробную зону от попадания нитратов;

максимально удалить нитратный азот, обеспечив совместную денитрификацию и дефосфатацию.

В основе данного правила заложено использование легко окисляемой органики фосфатаккумулирующими микроорганизмами (ФАО) и гетеротрофами в анаэробных и аноксидных условиях.

Современные представления о биохимии процесса использования легко окисляемой органики и энергии полифосфатных связей в анаэробных и аноксидных условиях, используемых в современных математических моделях, представлены на рис. 1.


Ферментируемые легко окисляемые вещества (растворенное биоокисляемое ХПК) в анаэробных условиях гидролизуется с производством летучих жирных кислот (ЛЖК), при этом происходит рост факультативно аэробных микроорганизмов гидролиза и ацидофикации. Произведённые в результате гидролиза и присутствующие в воде ЛЖК (ацетата и пропионата) используются ФАО для накопления внутреннего резерва питательных веществ в виде биополимеров РНА. Для баланса степени окисления используемых ЛЖК и запасаемых субстратов используется гликоген. В качестве источника энергии - макро энергетические связи в полифосфатах. В этом процессе используется максимум ЛЖК, накапливается максимум РНА и выделяется максимум полифосфатов.

В присутствии связанного кислорода в нитритах и нитратах ферментируемая органика и часть ЛЖК используются гетеротрофными микроорганизмами в процессе денитрификации. ФАО микроорганизмы также взаимодействуют ЛЖК, но вместо использования гликогена и энергии полифосфатов часть ЛЖК окисляются с использованием связанного кислорода.

В результате резко снижается накопление запасаемых биополимеров микроорганизмами ФАО и выделение фосфора в анаэробной зоне. Из-за этого значительно падает эффективность удаления фосфора - меньше субстрата для роста ФАО в присутствии кислорода и отсутствует необходимость восстанавливать концентрацию полифосфатов в их клетках.

При поступлении нитратов и нитритов в анаэробную зону сначала происходят процессы, характерные для аноксидных условий, а затем при снижении концентрации связанного кислорода до минимума - процессы, характерные для анаэробных условий. Таким образом, эффективность накопления запасаемых биополимеров и выделение фосфора зависят от соотношения массы поступающих легко окисляемых
веществ и массы поступающего связанного кислорода.


Это хорошо подтверждается данными, полученными при обследовании и моделировании городских очистных сооружений г. Якутска (рис. 2). Масса поступающего связанного кислорода пропорциональна концентрации нитратов в конце зоны денитрификации, откуда направляется рецикл ила в анаэробную зону. Ограничение концентрации нитратов, поступающих в анаэробную зону, на уровне около 1 мг/л позволяет добиться высокого выделения в ней фосфора. Также следует отметить, что денитрификация до данного уровня протекает без снижения скорости процесса.

Правило № 2 - контроль качества очищенной воды проводится по показателям концентрации аммонийного азота. Для контроля нитрификации необходим оптимальный кислородный режим и возраст ила.

Концентрация растворенного кислорода и концентрация аммонийного азота наряду с органическими и неорганическими ингибиторами оказывают решающее влияние на скорость роста микроорганизмов нитрификаторов как первой, так и второй фазы нитрификации.
Контроль концентрации растворенного кислорода - наиболее распространенный параметр при построении схем АСУТП. Цели контроля:

обеспечить требуемую глубину очистки по БПК и азоту аммонийному;

избежать перерасхода энергии на аэрацию.


Оптимальная концентрация растворенного кислорода для процесса нитрификации определена как по литературным данным, так и экспериментально - рис. 3. Во всех случаях повышение концентрации кислорода выше оптимальной не ведет к улучшению нитрификации, а только вызывает перерасход воздуха .

Возраст ила является ключевым фактором во всех методиках расчета сооружений с биологическим удалением азота и фосфора и при эксплуатации сооружений .

В современных моделях различают следующие показатели возраста ила:

Аэробный возраст ила эта величина определяет допустимые скорости роста микроорганизмов нитрификации первой и второй фазы.
Определяется как отношение массы ила, находящейся в аэробных условиях, к массе выводимого из сооружений ила. Меньшие значения возраста принимаются при концентрациях аммонийного азота от 1 мг/л в отсутствии жёсткого нормирования по нитритам. Для достижения более глубокой нитрификации принимаются большие значения возраста ила. Также увеличение или уменьшение возраста ила связано с изменением температуры стока и наличием ингибиторов нитрификации. На рис. 4 представлена зависимость аэробного возраста ила от температуры при полной нитрификации, а также возраст ила, необходимый для начала процесса нитрификации в аэротенках.

Анаэробный возраст ила отвечает за рост микроорганизмов гидролиза и ацидофикации, происходящих в анаэробных условиях. В зависимости от необходимости получать дополнительные ЛЖК в анаэробной зоне возраст анаэробного ила составляет от 1-х до 3-х суток. Определяется как отношение массы ила в анаэробной зоне к общей массе выводимого ила.

Общий возраст ила определяет соотношение видов биомассы в биоценозе и глубину самоокисления ила. Общий возраст ила определяется как отношение массы ила во всех зонах аэротенка (анаэробной, аноксидной и аэробной) к массе выводимого с приростом ила. В каждом случае в процессе существует оптимальный возраст ила. Уменьшение общего возраста ила не позволяет получить оптимальные аэробный и анаэробный возраст ила и осуществлять процессы денитрификации. Увеличение возраста приводит к развитию процессов автолиза ила и снижению эффективности удаления фосфора (рис. 5 и рис. 6).



Приоритетность целей управления

Поскольку рассмотренные цели управления могут противоречить друг другу при работе конкретной станции, при проектировании системы управления надо определить приоритеты.

Приоритетность целей управления показана на рис. 7 и объясняется следующим образом:

. восстановление нитрификации связано с ростом нитрификаторов и может занимать до двух недель. Действия системы управления ни в коем случае не должны приводить к потере нитрифицирующих микроорганизмов. В зарубежной практике, в том числе в рекомендациях по расчёту аэротенков ATV при неблагоприятных условиях (к примеру, сезонном снижении температуры стоков) рекомендуется предусматривать возможность увеличения аэробного объема аэротенков за счет зоны денитрификации;
. восстановление денитрификации связано с перестройкой ферментативной системы и занимает от нескольких минут (переключение на другой фермент в дыхательной цепи) до нескольких часов (синтез ферментов). Следует учитывать, что при нарушении или недостаточном времени денитрификации растет концентрация нитратов в очищенной воде.
Величина концентрации азота нитратов в очищенной воде технологически может корректироваться только при наличии специальных сооружений доочистки. Поэтому при необходимости допускается при неблагоприятных условиях использовать для денитрификации часть или всю анаэробную зону аэротенка;
. восстановление удаления фосфора связано как с перестройкой ферментативной системы, так и с ростом ФАО. Восстановление процесса занимает от нескольких минут (переключения в ферментативной системе) до суток (рост концентрации ФАО в биоценозе). Концентрация фосфора легко корректируется реагентом как на стадии биологической очистки, так и при доочистке, поэтому временная потеря эффективности дефосфатации при управлении дозированием реагента не ведет к ухудшению качества очищенной воды.

Методы реализации управления

Рассмотрим, какими методами может быть реализована система управления, решающая поставленные цели, на примере схемы биологической очистки стоков с применением процесса UCT.

На рис. 8 представлена принципиальная схема процесса UCT в наиболее полном варианте реализации, включающая анаэробную зону, аноксидную зону, зону с переменным режимом (можно поддерживать различные условия - аэробные, аноксидные или периодической аэрации), аэробную зону и вторичный отстойник. Первая цель - ограничить массу азота нитратов (и нитритов) Q2CNO3 так, чтобы она была значительно меньше массы поступающих органических веществ Q1C1. Основной проблемой в этом случае является вопрос, чем померить это соотношение. Здесь, на первый взгляд, напрашиваются два варианта:
1) Измерить концентрации поступающего азота нитратов и растворенных органических или растворенных биоокисляемых веществ. Для реализации такого подхода потребуется измерять два расхода, концентрацию азота нитратов и концентрацию растворенных органических веществ химическими или биохимическими методами. Такое измерение возможно, но система получится достаточно сложной и дорогой.
2) Поскольку мы ограничиваем влияние азота нитратов - измерять их концентрацию в анаэробной зоне. Здесь надо учитывать, что при низких концентрациях азота нитратов он является лимитирующим фактором процесса денитрификации (как акцептор электронов аналогично кислороду в аэробных процессах). Следовательно, остаточная концентрация азота нитратов будет подчиняться уравнению Моно. Т.е. при низких концентрациях азота нитратов они практически не удаляются вследствие падения скорости реакции. В результате при низких концентрациях (по результатам моделирования - менее 0,1 мг/л) азота нитратов в анаэробной зоне возможны два варианта:
. низкая концентрация достигнута в результате малой массы азота нитратов, поступающей в анаэробную зону;
. низкая концентрация достигнута в результате удаления азота нитратов в анаэробной.

Таким образом, измерение окажется малочувствительным.

В руководстве по проектированию и эксплуатации станций с биологическим удалением фосфора отмечалось, что при контроле удаления азота одним из полезных измерений является измерение окислительно-восстановительного потенциала Еh. Величина Еh (при постоянном рН) определяется балансом окислителей и восстановителей в растворе, т.е. способностью принимать или отдавать электроны, а также характером окислителя и восстановителя. Величина Еh существенно падает при изменении окислителей в следующем порядке - растворенный кислород - нитриты и нитраты - сульфаты. Таким образом, использование датчика Еh позволяет оценить роль нитритов и нитратов в процессах, происходящих в анаэробной зоне, и соотношение окислителя и органики.

Поэтому использование Еh для контроля анаэробной зоны является достаточно простым и надежным методом.

Для того, чтобы поддерживать оптимальную величину Еh, в рассматриваемой технологии возможно управлять расходом Q2 и концентрацией нитратов CNO3.

Управление расходом реализуется достаточно просто за счет применения насоса с использованием частотных регуляторов, и, как правило, используется во всех схемах с процессами на основе UCT, однако это влияет на диапазон регулирования (ограничено в интервале ±30 %). Уменьшать величину расхода рецикла меньше нерационально, так как это противоречит основной задаче данного рецикла - подаче активного ила в анаэробную зону. Увеличивать более тоже нецелесообразно, так как с увеличением расхода растет не только масса подаваемого ила, но и снижает ся время нахождения в анаэробной зоне.

Для того, чтобы управлять концентрацией нитратов CNO3, есть несколько вариантов. Первый вариант - управлять массой поступающего азота в рецикле денитрификации Q4CNO3 выход за счет изменения расхода Q4. Данный принцип управления наиболее легко реализуем - концентрация нитратов измеряется непосредственно в конце зоны денитрификации, а насос регулируется частотным регулятором. Управление данным рециклом применяется в большинстве схем с удалением азота и совместным удалением азота и фосфора. Регулирование данного рецикла технически ограничено возможностями совместной работы насоса и частотного регулятора, а технологически - достижением необходимой концентрации нитратов в очищенной воде.

Аналогично массой поступающего азота Q3CNO3выход можно управлять за счет изменения расхода Q3. Данный вид управления сложней, та как, как правило, расход возвратного ила регулируется не насосом, а водосливами на камерах возвратного ила, а насос вторично регулируется по уровню в резервуаре. Также данный вид регулирования технически ограничен повышением уровня стояния ила во вторичном отстойнике LeSL (см. рис. 8) при снижении расхода рецикла. Такое регулирование применяется в технологических схемах, создаваемых на основе процесса MUCT4 - с выделением отдельной зоны денитрификации возвратного ила. При этом желательно отслеживать уровень стояния ила во вторичных отстойниках.

Другим вариантом управления массой азота, поступающей в денитрификатор (Q3 + Q4)∙CNO3выход, является регулирование концентрации азота нитратов в очищенной воде. Такой метод регулирования применяется, как правило, совместно с регулированием расхода рецикла денитрификации, при наличии зон с переменным режимом. Для регулирования нитри-денитрификации в зонах с переменным режимом используется расход воздуха Qair1.

Снижение концентрации растворенного кислорода до уровня одновременной нитри-денитрифкации или периодическое отключение подачи воздуха происходит всегда с обратной связью по концентрации азота аммонийного NH4, чтобы не нарушить процесс нитрификации. При этом обязательно вносится поправка в расчет аэробного возраста.

Для зон с периодической аэрацией аэробный возраст рассчитывается как:

где TA/TD отношение времени аэрации и денитрификации;
W - объем зоны аэротенка, м3;
ai - доза ила, г/л;
ar - доза ила в возвратном иле, г/л;
qi - расход избыточного ила, м3/сутки.

Аэротенки «карусельного» типа

В некоторых проектах для организации процесса нитри-денитрификации используются аэротенки с «карусельным» принципом перемешивания. В этом случае при организации регулирования следует различать два принципиально разных случая.


Первый случай - «короткая карусель» (рис. 9). Если на выходе из системы аэрации поддерживается концентрация растворенного кислорода, оптимальная для процесса нитрификации, то за время прохождения потока от выхода из системы аэрации до возвращения, концентрация растворенного кислорода не успевает снизиться до уровня прохождения процессов денитрификации. При этом справедливо:

где L - длина пробега от конца до начала аэрационной системы (м), v - скорость движения воды в «карусели» (м/сек), CO2 - концентрация
кислорода после аэрационной системы (мг/л), OUR - средняя скорость потребления кислорода (мгО2/г СВ в сек), ai - доза ила (г/л).
В среднем длина пробега для потери кислорода составляет 50 м.
Такие сооружения оптимально работают в режиме периодической аэрации, который контролируется по датчикам растворенного кислорода и азота аммонийного. По концентрации азота аммонийного происходит включение/выключение подачи воздуха.

Принципиально другим случаем является «длинная карусель» (L/v››CO2 / (OUR∙ai), когда время пробега позволяет снизить кислород до оптимума денитрификации и выделить в «карусели» зону денитрификации в пространстве (рис. 10).


В этом случае можно регулировать протяжённость зоны денитрификации, т.е. устраивать зону с переменным режимом в «карусели». Управление зоной переменного режима осуществляется по общему принципу - включение/выключение подачи воздуха Qair1 осуществляется по датчику азота аммонийного. При включенной системе аэрации концентрация кислорода поддерживается на оптимуме нитрификации по датчику кислорода О2(1). Подача воздуха в часть карусели, которая всегда аэробна, производится по датчику кислорода О2(2), расположенному в конце аэробной зоны и обеспечивающему начало процесса денитрификации в точке подачи стока.

Поддержание концентрации растворенного кислорода в аэрируемых зонах

Поддержание концентрации растворенного кислорода в аэрируемых зонах может происходить с использованием разных алгоритмов.
Рассмотрим подробнее их достоинства и недостатки.
Прямое регулирование расхода воздуха представлено на рис. 11.
Это самый простой в осуществлении алгоритм регулирования. Такое регулирование может осуществляться непосредственно от встроенных контроллеров приборов определения концентрации растворенного кислорода. Данный метод имеет следующие ограничения:
. Нет защиты по минимальному расходу воздуха - при снижении расхода может быть нарушена минимальная интенсивность аэрации с расслоением иловой смеси и выпадением ила на дно аэротенка.
. Нет защиты по максимальному расходу воздуха - при увеличении расхода воздуха возможны длительные перегрузки аэрационной системы.
. Нет обратной связи по азоту аммонийному.

Данный метод рекомендуется для дополнительного регулирования расхода воздуха в отдельных аэрируемых зонах по длине аэротенка, он неприменим для зон с переменным режимом и при регулировании всей системы аэрации задвижкой на главном воздуховоде, так как может приводить к нарушениям технологии очистки и снижению срока службы аэрационной системы.


Второй метод управления - однокаскадный алгоритм управления расходом воздуха (рис. 12). В этом случае по результату сравнения заданной и текущей концентрации кислорода рассчитывается новое значение расхода воздуха, которое поддерживается задвижкой по расходомеру.

Такой алгоритм регулирования значительно надежней и является основным, принимаемым для управления расходом воздуха, в том числе и одной задвижкой на главном воздуховоде.

В данном случае можно поддерживать как минимальный, так и максимальный расход воздуха, обеспечивая минимальную интенсивность аэрации и предотвращая перегрузки системы аэрации. Отсутствует только связь с концентрацией азота аммонийного.

При необходимости использования сигнала датчика азота аммонийного используется наиболее сложный двухкаскадный алгоритм регулирования (рис. 13).


В этом случае к регулированию расхода воздуха по предыдущему принципу добавляется изменение «уставки» по растворенному кислороду по результатам измерения концентрации азота аммонийного. Это самый сложный алгоритм управления и самый дорогой по приборному обеспечению. Его рекомендуется применять в зонах с переменным режимом для получения наиболее глубокой денитрификации при сохранении качества очистки по азоту аммонийному.

Управление возрастом ила

Управление возрастом ила - процесс медленный, который, в принципе, может осуществляться как системой автоматики, так и оператором. При поддержании возраста наиболее важен рассчитываемый при моделировании так называемый «динамический возраст ила» - средняя величина за последний интервал времени, соответствующий величине расчетного возраста. На многих действующих станциях контроль возраста ила не ведется или ведется неправильно, так как определения прироста рассчитывается по различным формулам (часто устаревшим).

Концентрация ила в иловом рецикле со вторичных отстойников исходя из баланса масс может быть рассчитана:

Для сооружений, где весь активный ил подается в голову аэротенков, текущая величина возраста ила может быть рассчитана следующим образом:

где SAт - общий возраст ила, Waт - общий объем аэротенка, Qi - расход избыточного ила, Ri - коэффициент рециркуляции ила.

При наличии анаэробной зоны, куда подается ил из зоны денитрификации, доза ила в ней меньше и зависит от коэффициента рециркуляции в анаэробную зону. В этом случае доза ила в анаэробной части рассчитывается:

где: aan- доза ила в анаэробной части сооружения, ai - доза ила в аноксидной и аэробных зонах, Ra - коэффициент рециркуляции в анаэробную зону.

Тогда общий возраст ила в таких сооружениях:

Такой метод расчета возраста учитывает только значения расходов и значительно проще реализуется при автоматизации управления.

Пример схемы управления для очистных сооружений

В заключение рассмотрим схему управления двух коридорным аэротенков с применением процесса UCT, разработанную с применением описанных принципов для очистных сооружений г. Киров (рис. 14).


Ограничение массы поступающих в анаэробную зону нитратов достигается за счет регулирования расхода рецикла в анаэробную зону по датчику Еh и за счет регулирования рецикла денитрификации по датчику азота нитратов NO3 в зоне денитрификации. Предусмотрено автоматическое регулирование «уставки» NO3 при невозможности достижения заданного диапазона величины Еh путем регулирования рецикла в анаэробную зону. Для использования анаэробной зоны в качестве денитрификатора в неблагоприятных условиях предусмотрено введение оператором более высокой «уставки» Еh.

Общее регулирование концентрации растворённого кислорода происходит по двухкаскадному принципу от кислородного датчика О2 и расходомера воздуха Qair общей задвижкой на воздуховоде. Достижение постоянной концентрации кислорода по длине аэротенка обеспечивается изменением плотности раскладки аэраторов. Поскольку в начале аэробной зоны колебания расхода при соблюдении заданной концентрации менее выражены, для корректировки расхода воздуха в этой зоне используется однокаскадный принцип регулирования с дополнительным датчиком кислорода.

Вычисление величины возраста ила происходит автоматически по описанному принципу за счет измерения расходов. Корректировка массы выводимого ила и оптимума возраста должна производиться оператором.

Выводы

Применение математического моделирования позволяет определить основные принципы конструирования систем автоматического управления аэротенками с биологическим удалением азота и фосфора.

Для контроля процесса удаления фосфора необходимо минимизировать влияние нитратов, поступающих с рециркуляционными потоками в анаэробную зону, для чего контролируется масса азота нитратов в рециркуляционных потоках. Основным методом контроля массы азота нитратов, поступающего в анаэробную зону, является контроль процесса денитрификации путем изменения рециркуляционных расходов
и кислородного режима в зонах с переменным режимом.

Контроль процесса в анаэробной зоне рационально проводить по датчику окислительно-восстановительного потенциала.

Для поддержания процесса нитрификации следует контролировать кислородный режим и аэробный возраст ила.

При построении системы следует придерживаться следующих приоритетов: сохранение процесса нитрификации, сохранение процесса денитрификации и лишь затем - биологическое удаление фосфора.

В настоящее время имеется значительное число технологических схем процесса биологической очистки, каждая из которых отличается числом ступеней аэрации, наличием или отсутствием регенерации активного ила, способами ввода в сооружения сточной воды и возвратного ила, степенью очистки и др. Каждый тип сооружений характеризуется своими показателями нормальной работы и требует индивидуального подхода к проектированию системы автоматизированного управления.

Воздействия, которыми можно воспользоваться для построения системы автоматизированного управления, следующие :

Управление расходом возвратного ила с целью поддержания концентрации активного ила в аэротенке;

Управление расходом воздуха таким образом, чтобы поддержать заданную концентрацию растворённого кислорода во всем объёме аэротенка;

Управление расходом выводимого из системы активного ила для поддержания возраста ила постоянным;

Изменение соотношения объёмов аэротенка и регенератора(при сохранении постоянства их суммарного объёма) с целью оптимальной регенерации ила;

Распределение расхода поступающих сточных вод между параллельно работающими аэротенками;

Поддержание оптимального значения рН воды, поступающей в аэротенк

Управление расходом ила, выпускаемого из отстойников, чтобы поддержать в них оптимальный уровень ила и изменять его в зависимости от концентрации и расхода иловой смеси, мутности очищенной отстоянной воды, а также илового индекса.

В традиционных АСУ применяются алгоритмические модели, связывающие управляющее воздействие с входными данными (или их изменением). Недостатком традиционных методов управления применительно к процессу биологической очистки сточных вод является многомерность и сложность создаваемых математических моделей при низкой точности и неполноте исходной информации и неоднозначности критерия управления . С другой стороны, ситуации, возникающие при функционировании блока биологической очистки сточных вод, зачастую позволяют использование для управления методов формальных рассуждений, близких к естественному ходу рассуждений человека-эксперта. Для решения задач управления биологической очисткой они могут быть значительно более эффективны, чем традиционные АСУ, особенно с точки зрения сроков и стоимости разработки и модификации при изменении требований к системе и внешних условий, что является крайне важным фактором в свете непрерывного совершенствования технологии и повышения производительности блока биологической очистки. Характерной особенностью управляемого объекта является присущая очистной станции возможность корректировки технологической схемы и изменения состава оборудования. Данное обстоятельство повышает требования к открытости, перспективности и стандартизации создаваемой системы. Изменения в нормах качества очистки сточных вод, наращивание мощности очистных сооружений или добавление новых параметров контроля потребуют полной переработки математических моделей традиционной АСУ, в то время как в экспертной системе достаточно будет лишь скорректировать правила или добавить новые.

Кроме того, в процессе управления биологической очисткой часто возникают проблемные ситуации, для преодоления которых необходимо использовать опыт многих экспертов, нормативно-техническую, справочную и регламентирующую информацию, которая не всегда может быть доступна оператору. Управление работой очистных сооружений является сложной задачей, связанной с особенностями состояния и функционирования очистных сооружений. На практике, технолог очистных сооружений, осуществляющий принятие решений по управлению очисткой сточных вод, сталкивается со следующими проблемами:

Недостаток параметров для принятия решений, вследствие ограниченного резерва времени и высокой стоимости проведения специализированных лабораторных анализов;

Неполнота, неточность естественно-языковых инструкций для принятия решений;

Недостаточность теоретических знаний о процессе управления очисткой сточных вод и отсутствие учета особенностей функционирования конкретного очистного сооружения.

Процесс очистки сточных вод осуществляется в режиме запаздывания реакции системы и зависит от многих входных сигналов. Сигналы эти являются разнородными, поступают с разной периодичностью, на обработку части из них необходимо время, а также специальные лабораторные условия и дорогостоящие реактивы. Очистные сооружения функционируют частично за счет деятельности разнообразных живых организмов, чьи реакции на воздействие входных параметров специфичны и взаимозависимы. Оптимальные условия для существования комплексов организмов, осуществляющих очистку сточных вод, весьма сложно подбирать вследствие изменчивости этих комплексов в зависимости от состава сточных вод. Регулирование концентрации биогенных элементов, поддержание рН среды и температуры в нужном диапазоне положительно отражаются не только на развитии микроорганизмов, но и на биохимической активности последних по очищению воды. Для подбора оптимальных условий функционирования микроорганизмов в аэротенках используются автоматизированные системы управления, которые основываются на математических моделях (таблица 1.2) . Такие системы имеют ряд недостатков. Они хорошо работают, когда очистные сооружения находятся в нормальном режиме работы и плохо применимы в случае внештатного режима.

Естественно, что при возникновении проблемных ситуаций, необходимы знания и опыт экспертов, и разработки имитационных моделей и программ для решения уравнений явно недостаточно. Возникает необходимость использовать субъективную информацию, накопленную за годы, а также неполные данные и объективную информацию, накопленную за период работы очистных сооружений.

Применение методов и средств искусственного интеллекта предоставляет новые возможности для решения проблемы управления очистными сооружениями. Экспертные системы на основе искусственного интеллекта в идеальном случае должны обладать уровнем эффективности решений неформализованных задач, сравнимым с человеческим или превосходящим его. В любом случае, экспертная система «знает» меньше, чем человек-эксперт, но тщательность, с которой применяются эти знания, компенсирует их ограниченность. На данный момент за рубежом существует ряд экспертных систем (ЭС), применяемых для очистки сточных вод (таблица 1.3) .

Анализируя примеры из таблицы 1.3, следует отметить, что для управления блоком биологической очистки, являющимся элементом комплексной системы очистки бытовых сточных вод наиболее целесообразно использование системы, основанной на правилах.

Таблица 1.2 - Модели классического управления на биологических очистных сооружениях

Название

Пример применения

Оборудование

Недостатки моделей

Достоинства моделей

Корреляционная

Установление взаимо-связей и взаимо-зависимостей между характеристиками воды

Очистные сооружения

Наличие большого числа внешних факторов, взаимовлияние микроорганизмов взаимодействие с субстратом приводит сложности выбора адекватной модели описания системы.

Модели сложно разрабатывать, они часто неточны и чрезмерно упрощают действительность.

Имитационное моделирование не работает с неизвестными или не смоделированными ситуациями.

Качественные данные не могут быть использованы для модели числового управления.

Данные неточны или отсутствуют, датчики выдают ошибочную информацию или отсутствуют, не все характеристики, необходимые для моделирования анализируются каждый день, что влияет на точность моделей.

Характеристики втекающей воды сильно изменчивы и неуправляемы.

Задержка в получении данных из-за длительных лабораторных анализов и аналитических расчетов.

Оценка поведения очистных сооружений в ответ на определенный сценарий развития (операционные условия и характеристика втекающей воды) и прогноз на средний и длительный период возможных исходов при определенных действиях по процессу очистки

Повышение эффективности удаления загрязнителей

Сокращение расхода электроэнергии, химических реагентов и затрат на обслуживание очистных сооружений

Разработка альтернатив для модифицирования существующих очистных сооружений

Адаптивный алгоритм

Для поддержания необходимого уровня кислорода в аэротенке

Аэротенк

Прагматические модели

Фундаментальные модели

Рост бактерий и потребление субстрата

Аэротенк

Имитационные модели

Статистический синтез

Моделирование эволюции состояний очистных сооружений

Очистные сооружения

Кластеризация

Классификация данных с датчиков

Очистные сооружения

Закон Стокса

Моделирование осаждения

Песколовка

Кривая Гусмана

Моделирование осажде-ния твердых веществ

Метод оптимизации

Оптимизация обработки осадка

Первичный, вторичный отстойники

Детерминистические, прогнозные модели

Осаждение

Первичный, вторичный отстойники

Кривые функционирования и стохастические модели

Прогноз поведения отстойников

Первичный, вторичный отстойники

Таблица 1.3 - Средства искусственного интеллекта, разработанные для очистных сооружений

Название. Разработчик

Представле-ние знаний

Основные функции и характеристики

Недостатки

ЭС реального времени. (Baeza,J)

Регулирование работы очистных сооружений. Управление процессом очистки сточных вод через Интернет.

Системы на основе правил:

Не обучаются в процессе работы

Сложности с процессом извлечения знаний и опыта исходных данных

Неспособны к предви-дению, их область ограничена прошлыми предопределёнными ситуациями.

Системы на прецедентах:

Проблема индексации прецедентов в базе знаний;

Организация эффективной процедуры поиска ближайших прецедентов;

Обучение, формирования правил адаптации;

Удаление прецедентов, потерявших актуальность.

Прецеденты и правила:

Отсутствует синтаксическая и семантическая интеграция модулей системы

ЭС для определения состояния очистных сооружений. (Riano) 4]

Система автоматического построения правил, используемых для идентификации состояния очистных сооружений.

ЭС для управления очистными соору-жениями.(Yang)

Экспертная система для определения последовательности стадий очистки воды на очистных сооружениях

ЭС для управления ОС.(Wiese, J., Stahl, A., Hansen,J.)

Преце-денты

Экспертная система для определения вредных микроорганизмов в системе активного ила

ЭС по сокращению ущерба от загрязнения водных ресурсов. (Университет Сев. Каролины)

прецеденты

Оценка потенциальных воздействий для управления рассеянными источниками загрязнения в бассейне рек, основанная на информации и решениях, поступающих от пользователя.

ЭС реального времени для управления очистными сооружениями, (Sanchez-Marre)

прецеденты

ППР при наблюдении, комплексном контроле и управлении работой очистных сооружений. Комбинирует во фреймовую структуру: обучение, рассуждение, приобретение знаний, распределенное принятие решений. Правила вывода частично моделируют данные и экспертные знания. Система на прецедентах моделирует эмпирические знания.

Управление системой активного ила. (Comas ,J.)

прецеденты

Система контроля и управления системой активного ила на биологических очистных сооружениях. Ядро и основные модули разработаны на основе объектно-ориентированной оболочки, реализующей механизм логического вывода. Управляет получением данных, БД, системой правил и прецедентов.

Наиболее характерной формой для решения задач управления непосредственно блоком биологической очистки, являются экспертные системы, построенные на основе продукционной модели, где знания представлены совокупностью правил вида “если – то”. Основные преимущества такой экспертной системы - это простота пополнения, модификации и аннулирования информации и простота механизма логического вывода. Для организации структуры экспертной системы, представленной на рис.1.1 , требуется преобразовать технологическую информацию в структуру принятия решений, которая описывает работу базы знаний, а затем, на основе выбранной программной оболочки, составить программу работы экспертной системы.

Это и будет являться целью данной дипломной работы: адаптировать опыт теоретических исследований и практических решений в области использования экспертных систем для управления блоком биологической очистки сточных вод к конкретному процессу очистки, с учётом конструктивных параметров и принятой при проектировании индивидуальной технологической схемы данных очистных сооружений. А также создание полноценной системы автоматизации процесса и выбор технических средств её реализации.

Рисунок 1.1 – Структура управления процессом очистки сточных вод