Отопление

Гидроакустический лаг. Лаги и принцип их работы Лаги и принцип их работы

Гидроакустический лаг. Лаги и принцип их работы Лаги и принцип их работы

Индукционный электронный лаг ИЭЛ-3

Счетчик механического лага

Лаг - прибор, предназначенный для измерения скорости движения судна.

В древности в качестве лага использовался (и используется по сей день на небольших судах) ручной, или секторный лаг. Он представляет собой доску треугольной формы (сектор) с привязанной к ней верёвкой (линем, лаглинем) и грузом. На лине на одинаковом расстоянии друг от друга завязываются узлы. Доска выбрасывается за корму и пересчитывается количество узлов, ушедших за борт за определенное время (обычно 15 секунд или 1 минуту). Отсюда пошло измерение скорости судна в узлах, 1 узел численно равен 1 морской миле в час.

Принцип работы современных приборов основан на измерении напора воды, или гидролокации морского дна. Самые распространённые лаги - доплеровский (используется эффект Доплера), индукционный и корреляционный.

Лаги и принцип их работы.

Относительные лаги.

В настоящее время на судах морского транспортного флота применяются индукционные, гидродинамические и радиодоплеровские лаги, измеряющие скорость относительно воды.

Индукционные лаги.

Их действие основано на свойстве электромагнитной индукции. Согласно этому свойству при перемещении проводника в магнитном поле в проводнике индуктируется э.д.с., пропорциональная скорости его перемещения.

С помощью специального магнита под днищем судна создаётся магнитное поле. Объём воды под днищем, на который воздействует магнитное поле лага, можно рассматривать как множество элементарных проводников электрического тока, в которых индуктируется э.д.с.: значение такой э.д.с. позволяет судить о скорости перемещения судна. Эксплуатируемые на судах морского флота индукционные лаги ИЭЛ-2 и ИЭЛ-2М построены по одинаковой схеме: они измеряют только продольную составляющую относительной скорости; выступающих за корпус судна частей нет. Серийно изготовляется в настоящее время только лаг ИЭЛ-2М. Лаг ИЭЛ-2 снят с производства в 1980 г. Лаг ИЭЛ-2М может устанавливаться на всех морских судах, включая ледоколы и суда на подводных крыльях. Рекомендации по эксплуатации заключаются в следующем. С обрастанием корпуса судна лаги ИЭЛ-2 и ИЭЛ-2М начинают давать заниженные показания. В схемы лагов ИЭЛ-2 и ИЭЛ-2М включён фильтр, усредняющий их показания. Поэтому при измерении судном скорости лаг фиксирует это изменение с некоторым запаздыванием.

Гидродинамические лаги.

Принцип действия основан на измерении гидродинамического давления, создаваемого скоростным напором набегающего потока воды при движении судна. Поправка гидродинамического лага, как правило, нестабильна. Основными причинами, обуславливающими её изменения во время плавания, являются дрейф судна, дифферент, обрастание корпуса, качка и изменением района плавания. Рассчитать изменение поправки лага от влияния первых трёх причин не представляется возможным. Абсолютные лаги. Под абсолютными понимаются лаги, измеряющие скорость судна относительно грунта. Разработанные в настоящее время абсолютные лаги являются гидроакустическими и делятся на доплеровские и корреляционные.

Гидроакустические доплеровские лаги (ГДЛ).

Принцип работы ГДЛ заключается в измерении доплеровского сдвига частоты высокочастотного гидроакустического сигнала, посылаемого с судна и отражённого от поверхности дна. Результирующей информацией являются продольная и поперечная составляющей путевой скорости. ГДЛ позволяет измерить их с погрешностью до 0.1% . Разрешающая способность высокоточных ГДЛ составляет 0,01 - 0,02 уз. При установке дополнительной двух лучевой антенны А2 (см. рис.) ГДЛ позволяет контролировать перемещение относительно грунта носа и кормы, что облегчает управление крупнотоннажным судном при плавании по каналам, в узкостях и при выполнении швартовых операции. Большинство существующих ГДЛ обеспечивают измерение абсолютной скорости при глубинах под килём до 200-300 м. При больших глубинах лаг перестаёт работать или переходит в режим измерения относительной скорости, т.е. начинает работать от некоторого слоя воды как относительный лаг. Антенны ГДЛ не выступают за корпус судна. Для обеспечения их замены без докования судна они устанавливаются в клинкетах. Источниками погрешности ГДЛ могут быть: погрешность измерения доплеровской частоты; изменение углов наклона лучей антенны; наличие вертикальной составляющей скорости судна. Суммарная погрешность по этим причинам у современных лагов не превышает 0.5%.

Корреляционные лаги.

Принцип действия гидроакустического корреляционного лага(ГКЛ) заключается в измерении временного сдвига между отражённым от грунта акустическим сигналом, принятым на разнесенные по корпусу судна антенны.

На глубинах до 200 м ГКЛ измеряет скорость относительно грунта и одновременно указывает глубину под килём. На больших глубинах он автоматически переходит на работу относительно воды. Достоинствами ГКЛ по отношению к ГДЛ являются независимость показаний от скорости распространения звука в воде и более надёжная работа на качке.

В настоящее время на судах морского транспортного флота применяются индукционные, гидродинамические и радиодоплеровские лаги, измеряющие скорость относительно воды.

Индукционные лаги. Их действие основано на свойстве электромагнитной индукции. Согласно этому свойству при перемещении проводника в магнитном поле в проводнике индуктируется э. д. с., пропорциональная скорости его перемещения.

С помощью специального магнита под днищем судна создается магнитное поле. Объем воды под днищем, на который воздействует магнитное поле лага, можно рассматривать как множество элементарных проводников электрического тока, в которых индуктируется э. д. с.: значение такой э. д. с. позволяет судить о скорости перемещения судна.

Индукционный лаг, независимо от конструктивного решения его узлов, включает:

электромагнит, токосъемные контакты (электроды) для съема наведенного в воде сигнала; измерительное устройство для измерения сигнала на электродах и преобразования его в скорость; корректирующее устройство, исключающее методическую погрешность измеряемой скорости; счетно-решающее устройство для выработки пройденного судном расстояния; трансляционное устройство для передачи данных о скорости и пройденном расстоянии на репитеры и в судовую автоматику.

Эксплуатируемые на судах морского флота индукционные лаги ИЭЛ-2 и ИЭЛ-2М построены по одинаковой схеме:

они измеряют только продольную составляющую относительной скорости; выступающих за корпус судна частей нет. Вся измерительная и счетно-решающая часть лагов ИЭЛ-2 и ИЭЛ-2М выполнена на полупроводниковых элементах с максимальным использованием интегральных микросхем. Блочно-функциональный принцип построения обеспечивает быстрое отыскание неисправностей и их устранение путем замены отдельных узлов (плат) без последующей регулировки лага. Лаг ИЭЛ-2М является модернизацией лага ИЭЛ-2. Серийно изготовляется в настоящее время только лаг ИЭЛ-2М. Лаг ИЭЛ-2 снят с производства в 1980 г. Лаг ИЭЛ-2М может устанавливаться на всех морских судах, включая ледоколы и суда на подводных крыльях.

Рекомендации по эксплуатации заключаются в следующем. С обрастанием корпуса судна лаги ИЭЛ-2 и ИЭЛ-2М начинают давать заниженные показания. При этом проверка «рабочего нуля», нуля измерительной схемы и масштаба никаких изменений не показывает. Для исключения погрешности за счет обрастания корпуса необходимо установить новый масштаб. Значение нового масштаба:

где М - первоначально установленный масштаб;

Vл - наблюдаемая скорость по лагу;

Vи - действительная скорость судна относительно поды в момент наблюдения.

После вычисления нового масштаба необходимо перевести лаг в режим масштабирования (переключатель рода работы в приборе 6 перевести в положение «Масштаб») и с помощью потенциометров «Масштаб грубо» и «Масштаб точно» установить новое значение масштаба. После этого вернуть лаг в рабочий режим. Новое значение масштаба записать в формуляр лага и на карту в приборе 6. Установку нового масштаба можно производить как на ходу, так и при стоянке судна у причала и на якоре.

В схемы лагов ИЭЛ-2 и ИЭЛ-2М включен фильтр, осредняюший их показания. Поэтому при изменении судном скорости лаг фиксирует это изменение с некоторым запаздыванием. Фильтры имеют две постоянные времени, устанавливаемые по желанию судоводителя специальным тумблером. Первой постоянной рекомендуется пользоваться при плавании вблизи берегов и спокойном состоянии моря, второй постоянной - при плавании в открытом море и на сильном волнении.

Гидродинамические лаги. Принцип действия основан на измерении гидродинамического давления, создаваемого скоростным напором набегающего потока воды при движении судна.

Поправка гидродинамического лага, как правило, нестабильна. Основными причинами, обусловливающими ее изменения во время плавания, являются дрейф судна, дифферент, обрастание корпуса, качка и изменение плотности морской воды с изменением района плавания.

Практика показывает, что наибольшую погрешность в измерении скорости вызывает дрейф судна. При больших углах дрейфа погрешность может достигать 3-4%. От изменения дифферента и обрастания корпуса погрешность не превышает 1-2%. При использовании штевневого приёмного устройства погрешность от обрастания корпуса судна вообще не возникает.

Погрешности от дрейфа, дифферента и обрастания корпуса носят систематический характер. Поэтому, будучи определены из наблюдений, они могут учитываться в дальнейшем при счислении.

Погрешность лага за счет качки носит периодический характер. При выработке пройденного расстояния эта погрешность интегрируется и в случае симметричной качки обращается в ноль.

Погрешность (в %) лага от изменения плотности морской воды с изменением района плавания может быть рассчитана по формуле

где Dr - изменение плотности морской воды;

r - плотность воды в районе плавания. Наибольшее значение, которого может достигатьDv - 1,0-1,5%. При плавании в одном бассейне (Балтийское, Черное, Каспийское моря) эта погрешность не превышает 0,5%.

2. Абсолютные лаги .

Под абсолютными понимаются лаги, измеряющие скорость судна относительно грунта. Разработанные в настоящее время абсолютные лаги являются гидроакустическими и делятся на доплеровские и корреляционные.

Гидроакустические доплеровские лаги (ГДЛ). Принцип работы ГДЛ заключается в измерении доплеровского сдвига частоты высокочастотного гидроакустического сигнала, посылаемого с судна и отраженного от поверхности дна.

Результирующей информацией являются продольная и поперечная составляющие путевой скорости. ГДЛ позволяет измерять их с погрешностью до 0,1%, Разрешающая способность высокоточных ГДЛ составляет 0,01- 0,02 уз.

Для измерения только продольной составляющей путевой скорости ГДЛ должен иметь двухлучевую антенну А 1 (на рис. 4.1 лучи 1 и 3). Для измерения продольной и поперечной составляющих антенна должна быть четырехлучевой, Лучи 2 и 4 используются в этом случае для измерения поперечной составляющей путевой скорости. На основании измеряемых продольной и поперечной составляющих путевой скорости гидроакустический доплеровский лаг позволяет определять вектор путевой скорости судна в каждый момент времени и снос судна под влиянием ветра и течения.

При установке дополнительной двухлучевой антенны A 2 (см. рис. 4.1) ГДЛ позволяет контролировать перемещение относительно грунта носа и кормы, что облегчает управление крупнотоннажным судном при плавании по каналам, в узкостях и при выполнении швартовных операций.

Большинство существующих ГДЛ обеспечивают измерение абсолютной скорости при глубинах под килём до 200-300 м. При больших глубинах лаг перестаёт работать или переходит в режим измерения относительной скорости, т. е. начинает работать от некоторого слоя воды как относительный лаг.

Антенны ГДЛ не выступают за корпус судна. Для обеспечения их заменыбез докования судна они устанавливаются в клинкетах.

В качестве электроакустических преобразователей в антеннах доплеровских лагов используются пьезокерамические элементы.

Источниками погрешности ГДЛ могут быть: погрешность измерения доплеровской частоты; изменение скорости звука в морской воде; изменение углов наклона лучей антенны; наличие вертикальной составляющей скорости судна. Суммарная погрешность по этим причинам у современных лагов не превышает 0,5%.

Корреляционные лаги. Принцип действия гидроакустического корреляционного лага (ГКЛ) заключается в измерении временного сдвига между отраженным от грунта акустическим сигналом, принятым на разнесенные по корпусу судна антенны (рис. 4.2). Сигнал U 2 (t), принятый задней приемной антенной, повторяет форму сигнала U 1 (t), принятого передней антенной со сдвигом по времени t, равным:

где l - расстояние между антеннами;

V - скорость судна.

Определение временного сдвига производится путем корреляционной обработки принятых сигналов. Для этой цели в тракт сигнала передней антенны вводится переменная временная задержка, производится вычисление взаимно-корреляционной функции огибающих сигналов разнесенных антенн и отслеживаются ее максимальные значения.

На глубинах до 200 м ГКЛ измеряет скорость относительно грунта и одновременно указывает глубину под килем. На больших глубинах он автоматически переходит на работу относительно воды.

Достоинствами ГКЛ по отношению к ГДЛ являются независимость показаний от скорости распространения звука в воде и более надежная работа на качке.

Принцип действия гидроакустического доплеровского лага осно­ван на эффекте Доплера, в соответствии с которым при относительном движении источника или приемника звуковых волн происходит изме­нение частоты принимаемых колебаний по отношению к излученным, причем это изменение, называемое доплеровским сдвигом, пропорци­онально скорости указанного относительного движения.

При использовании доплеровского гидроакустического лага и из­лучатель, и приемник колебаний находятся на судне. Рассмотрим про­цесс формирования доплеровского сдвига частоты, который происхо­дит в этом случае

Точка О являющаяся в рассматриваемом случае приемником, неподвижна. Поэтому на основании полученных результатов. Можно записать, что

В точке Озвуковой луч отражается, не меняя частоты, а затем идет к приемнику. Следовательно, точку Оможно рассматривать как непод­вижный источник, излучающий волны частотой . Частоту в при­емнике можно определить с учетом того, что теперь Имеем:

Выражение показывает, что, в принципе, зависимость fд от скорости судна носит нелинейный характер. Это является одним из основных недостатков однолучевого лага.

Абсолютную погрешность определения доплеровского сдвига час­тоты

можно найти по формуле

Более показательной является относительная погрешность

Зависимость изменения частоты колебаний или длины волны, восприни­маемой наблюдателем, от скорости источника колебаний и наблюдателя при движении относительно друг друга, называется эф­фектом Доплера.

Эффект Доплера для звуковых волн может наблюдаться непосредственно. Он проявляется в повышении тона звука, когда источник звука и наблюда­тель сближаются, и соответственно в понижении тона звука, когда они уда­ляются.

Принцип действия гидроакустического лага, основанного на эффекте Доплера и применяемого для измерения скорости судна относительно грун­та (дна), заключается в следующем.

В днище судна установлена антенна, действующая как излучатель и приемник ультразвуковых колебаний. В сторону дна из­лучаются ультразвуковые волны частотой f 0 в виде узкого пучка под углом Ө к плоскости горизонта. Считаем для простоты, что угол дифферента судна равен нулю, вектор скорости судна совпадает с курсом, а вертикальных перемещений судна нет.

Длина волны ультразвуковых ко­лебаний λв воде, излученных с дви­жущегося судна, λ = W/ f 0 где W - результирующая скорость удале­ния излученной волны от судна в направлении звукового луча.

Cкорость W опре­деляется скоростью звука с и проек­цией вектора скорости V c судна на на­правление излучения:

W=c - VcCOS Ө1. Тогда λ= (c - VcCOS Ө)/ f 0

В силу неровностей рельефа дна звуковая волна рассеивается во все сто­роны, в том числе и в направлении антенны. Таким образом, от дна будет по­лучен эхо-сигнал с длиной волны λ,

Скорость приближения эхо-сигнала W′ =c + VcCOS Ө

В результате частота принятых колебаний с учетом предыдущих уравнений может быть представлена в виде f п = f 0 (1+(2VcCOS Ө)/c)

Разность частот эхо-сигнала, пришедшего на антенну со дна, и излученного сигнала и будет являться уравнением однолучевого доплеровского лага (доплеровский сдвиг).

f д = f п - f 0 =2f 0 VcCOS Ө/c

Практическая реализация однолучевого доплеровского лага связана с рядом трудностей, основными из которых являются нелинейность зависи­мости f д от V c , изменение угла Ө

при крене, дифференте и на качке, влияние вертикальной составляющей скорости судна на измеряемый сигнал. Рабочие глубины доплеровских лагов находятся в пределах 200 – 300 м. погрешность, вызванная изменением скорости звука в морской воде, может достигать 4 %, поэтому в большинстве конструкций лагов приняты меры по компенсации или учёта погрешности. Коррекция выполняется вручную или автоматически по двум параметрам: температуре воды и её солёности. Точность показаний доплеровских лагов довольно высока и при углах крена, дифферента, качки, не превышающих 2 – 3%. Суммарная погрешность составляет 0,1 – 3%.


14.Двухлучевые и многолучевые доплеровские лаги.

Эффективным способом устранения нелинейной зависимости между сдвигом частоты и скоростью судна является использование двухлучевой антенной системы , так называемой схемой " Янус" (рис8.4) . По этой схеме акустические сигналы излучаются вдоль диаметральной плоскости судна в сторону носа и кормы под одним и тем же углом Θо. Частоту сигнала, принятого по носовому лучу f2н можно определить по выражению (f= fo*(1+Vx*cos Θо/c)*(1- Vx*cos Θо/c)¯¹), f2н = fo*(1+2Vx*cos Θо/c + 2V²x*cos² Θо/c +…) .-формула(1) . Для сигнала, принятого по кормовому лучу, получиманалогичное выражение, заменив Vx*cos Θо на - Vx*cos Θо. В результате получим: f2к = fo*(1-2Vx*cos Θо/c + 1- 2V²x*cos² Θо/c +…) .-формула(2). Доплеровский сдвиг частоты найдем как разность частот сигналов, принятых по носовому и кормовому лучам: fд = f2н- f2к .-формула(3). Подставляя в (3) значения f2н и f2к в соответствии с выражениями (1) и (2), получим истинное значение доплеровского сдвига частоты fд= (fo*4* Vx cos Θо)/ с . -формула (4) , где с - скорость распространения сигнала в воде. Найдем относительные погрешности δfд (которая определяется отношением Δfд/fдл, где fдл-лаговый доплеровский сдвиг частоты) и δVx (δVx= ΔVx/Vx). Окончательный результат имеет вид: δfд = Δfд/fдл = δVx= ΔVx/Vx = (V²x / с²)* cos² Θо. - формула (5). Итак при использовании в гидроакустическом доплеровском лаге схемы Янус с высокой степенью точности обеспечивается линейная связь между доплеровским сдвигом частоты, полученной как разность сигналов, принятых по носовому кормовому лучам, и скорости судна. Уравнение двухлучевого доплеровского лага Vx= (fд* С*sec Θо)/ 4* fo - формула(6), или Vx= fд/ Кv , где Кv=(4* fo* cos Θо)/ с - коэффициент скоростной чувствительности лага. Кv характеризует величину приращения доплеровского сдвига частоты при увеличении скорости на 1 уз. При прочих равных условиях выгоднее иметь большую величину коэффициента Кv, т.к. точность измерения скорости (при неизменной величине инструментальных погрешностей) будет выше.

Абсолютные лаги

Под абсолютными понимаются лаги, измеряющие скорость судна относительно грунта. Разработанные в настоящее время абсолютные лаги являются гидроакустическими и делятся на доплеровские и корреляционные.

Гидроакустические доплеровские лаги (ГДЛ)

Принцип работы ГДЛ заключается в измерении доплеровского сдвига частоты высокочастотного гидроакустического сигнала, посылаемого с судна и отраженного от поверхности дна.

Рис 2

Результирующей информацией являются продольная и поперечная составляющие путевой скорости. ГДЛ позволяет измерять их с погрешностью до 0,1%, Разрешающая способность высокоточных ГДЛ составляет 0,01-- 0,02 уз.

Для измерения только продольной составляющей путевой скорости ГДЛ должен иметь двухлучевую антенну А 1 (на рис. 2 лучи 1 и 3). Для измерения продольной и поперечной составляющих антенна должна быть четырехлучевой, Лучи 2 и 4 используются в этом случае для измерения поперечной составляющей путевой скорости. На основании измеряемых продольной и поперечной составляющих путевой скорости гидроакустический доплеровский лаг позволяет определять вектор путевой скорости судна в каждый момент времени и снос судна под влиянием ветра и течения.

При установке дополнительной двухлучевой антенны A 2 (см. рис. 2) ГДЛ позволяет контролировать перемещение относительно грунта носа и кормы, что облегчает управление крупнотоннажным судном при плавании по каналам, в узкостях и при выполнении швартовных операций.

Большинство существующих ГДЛ обеспечивают измерение абсолютной скорости при глубинах под килём до 200-300 м. При больших глубинах лаг перестаёт работать или переходит в режим измерения относительной скорости, т. е. начинает работать от некоторого слоя воды как относительный лаг.

Антенны ГДЛ не выступают за корпус судна. Для обеспечения их замены без докования судна они устанавливаются в клинкетах.

В качестве электроакустических преобразователей в антеннах доплеровских лагов используются пьезокерамические элементы.

Источниками погрешности ГДЛ могут быть: погрешность измерения доплеровской частоты; изменение скорости звука в морской воде; изменение углов наклона лучей антенны; наличие вертикальной составляющей скорости судна. Суммарная погрешность по этим причинам у современных лагов не превышает 0,5%.