Строительство дома

Устройство магнитной подушки поезда трансрапид технология ems. Все самое интересное о поездах на магнитном подвесе. Магнитная подушка. Как это работает

Устройство магнитной подушки поезда трансрапид технология ems. Все самое интересное о поездах на магнитном подвесе. Магнитная подушка. Как это работает

Магнитоплан или Маглев (от англ. magnetic levitation) — это поезд на магнитном подвесе, движимый и управляемый магнитными силами. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является сила аэродинамического сопротивления.

Скорость, достижимая маглев, сравнима со скоростью самолета и позволяет составить конкуренцию воздушным сообщениям на малых (для авиации) расстояниях (до 1000 км). Хотя сама идея такого транспорта не нова, экономические и технические ограничения не позволили ей развернуться в полной мере: для публичного использования технология воплощалась всего несколько раз. В настоящее время, Маглев не может использовать существующую транспортную инфраструктуру, хотя есть проекты с расположением элементов магнитной дороги между рельсов обычной железной дороги или под полотном автотрассы.

На данный момент существует 3 основных технологии магнитного подвеса поездов:

1. На сверхпроводящих магнитах (электродинамическая подвеска, EDS).

Созданная в Германии “железная дорога будущего” и прежде вызывала протесты жителей Шанхая. Но на этот раз власти, напуганные демонстрациями, грозящими вылиться в крупные волнения, пообещали разобраться с поездами. Чтобы вовремя пресекать демонстрации, чиновники даже развесили видеокамеры в тех местах, где чаще всего происходят массовые протесты. Китайская толпа очень организованна и мобильна, она может в считанные секунды собраться и превратиться в демонстрацию с лозунгами.

Это крупнейшие народные выступления в Шанхае со времен антияпонских маршей в 2005 году. Это уже не первый протест, вызванный озабоченностью китайцев ухудшающейся экологией. Минувшим летом многотысячные толпы демонстрантов заставили правительство отложить строительство химического комплекса.

  • Поезда на магнитной подушке способны развивать большую скорость, чем обычные поезда.
  • Поезда на магнитной подушке производят меньше шума, чем обычные поезда.
  • Поезда на магнитной подушке сокращают время в пути для пассажиров.
  • Поезда на магнитной подушке используют источники электрической энергии, в меньшей степени загрязняющие атмосферу.

Недостатки поездов на магнитной подушке

  • Поезда на магнитной подушке стоят дороже, чем обычные поезда.
  • Поезда на магнитной подушке требуют особого обучения персонала.
  • Поезда на сверхпроводниковой магнитной подушке используют для создания левитации мощные электромагниты, установленные на рельсе. При этом возникает задача экранировать пассажиров от воздействия сильных магнитных полей.
  • Неожиданное падение напряжения приведет к тому, что вагоны поезда на сверхпроводниковой магнитной подушке опустятся на рельс. На большой скорости это может быть опасным (при эксплуатации поездов типа Inductrack такие - проблемы не возникают, так как колеса поезда позволят вагонам двигаться по инерции до полной остановки).
  • Сильный боковой порыв ветра может нарушить работу поезда на магнитной подушке, сместив вагоны и заставив их прийти в соприкосновение с рельсом. Снег или лед на рельсе также могут вызвать проблемы.

Вопрос

Как изолировать пассажиров от воздействия сильных магнитных полей в поезде на сверхпроводниковых магнитных подушках?

Ответ

Вагоны или, по крайней мере, купе могут быть сделаны из ферромагнитного материала (стали, например), блокирующего линии магнитной индукции. К сожалению, сталь гораздо тяжелее алюминия, обычно использующегося при производстве поездов. Алюминий не является ферромагнетиком и не обеспечивает защиты от магнитных полей, если к нему не подвести токи высокого напряжения, потенциально опасные для пассажиров.

Вопрос

Преодолеет ли поезд на магнитной подушке крутой холм или гору? Не скатится ли он вниз по склону и не останется ли в долине, если отсутствует трение, необходимое для торможения?

Ответ

Линейные индукционные двигатели,- применяемые в поездах на магнитной подушке, способны поднимать такие поезда по более крутым склонам, чем обычные поезда. Более того, линейные индукционные двигатели переключаются на торможение в реверсном режиме, предохраняя поезд от скатывания вниз за счет работы, направленной против силы тяготения.

Маглев
Привод электродвигатель
Период с года
Скорость до 603 км/ч
Область применения городской и междугородный общественный транспорт
Инфраструктура магнитный рельсовый путь

Скорость, достигаемая поездом на магнитной подушке, сравнима со скоростью самолёта и позволяет составить конкуренцию воздушному транспорту на ближне- и среднемагистральных направлениях (до 1000 км). Сама идея такого транспорта не нова, экономические и технические ограничения не позволили ей развернуться в полной мере: для публичного использования технология воплощалась всего несколько раз. В настоящее время маглев не может использовать существующую транспортную инфраструктуру , но уже есть проекты [ ] с расположением магнитных элементов между рельсами обычной железной дороги или под полотном автотрассы .

Технология

На данный момент существует 3 основных технологии магнитного подвеса поездов:

  1. На сверхпроводящих магнитах (электродинамическая подвеска, EDS)
  2. На электромагнитах (электромагнитная подвеска, EMS)
  3. На постоянных магнитах ; это новая и потенциально самая экономичная системa.

Состав левитирует за счёт отталкивания одинаковых магнитных полюсов и, наоборот, притягивания противоположных полюсов. Движение осуществляется линейным двигателем , расположенным либо на поезде, либо на пути, либо и там, и там. Серьёзной проблемой проектирования является большой вес достаточно мощных магнитов, поскольку требуется сильное магнитное поле для поддержания в воздухе массивного состава.

Наиболее активные разработки маглева ведут Германия , Япония , Китай , и Южная Корея .

Достоинства

Недостатки

Реализация

Германия

Эмсланд

Transrapid, немецкая компания по разработке маглева, построила в 1984 году в Эмсланде испытательный трек общей длиной 31,5 км. Дорога проложена между Дёрпеном и Латеном , имеет одну колею с оборотными петлями на каждом конце. Поезда беспилотные, весь контроль движением осуществляется из диспетчерского пункта. Максимальная скорость движения, которую удавалось развить на прямом участке дороги во время испытаний - 501 км/ч.

Лицензия на использование трассы закончилась в 2011 году, после чего трасса была закрыта. Трасса маглева должна была быть разобрана в 2012 году, но демонтаж до сих пор не начат. Поезд Трансрапид 09 находится в г. Латене в законсервированном состоянии и его последующее запланированное использование на острове Тенерифе остаётся на стадии концепции.

M-Bahn в Берлине

Первая публичная система маглев (M-Bahn) построена в Берлине в 1980-х годах.

Дорога длиной 1,6 км соединяла 3 станции метро от железнодорожного узла Gleisdreieck до выставочного комплекса на Potsdamer Straße и была открыта для движения пассажиров 28 августа года . Поезда могли достигать скорости 80 км/ч и вмещали до 130 пассажиров . Проезд был бесплатный, вагоны управлялись автоматически без машиниста, дорога работала только по выходным дням. В районе, куда подходила дорога, предполагалось провести массовое строительство. Дорога была построена на эстакадном участке бывшей линии метро U2, где движение было прервано в связи с разделением Германии и разрушениями во время войны. По окончании необходимых испытаний, во время которых было пройдено более 100 тыс. км и перевезено более 1,7 млн пассажиров, 18 июля года линия перешла в промышленную эксплуатацию и включена в систему общественного транспорта Берлина .

Строительство первой магнитной железной дороги было начато в 1987 году в Армении и по плану должно было быть завершено в 1991 г. Эта дорога должна была соединить через Абовян города Ереван и Севан , однако Спитакское землетрясение 1988 года и военные события стали причиной замораживания проекта. Поезда должны были развивать скорость 250 км/ч, в итоге была построена лишь эстакада [где? ] .


Китай

Шанхай

Высокоскоростная маглев-трасса от шанхайского аэропорта Пудун до первой станции метро Шанхая . Линия построена немецким консорциумом Transrapid, включавшим компании Siemens и ThyssenKrupp . Открыта в 2004 году. В качестве подвижного состава используются модифицированные поезда Siemens Transrapid 08 . Длина трассы - 30 км; максимальная скорость поезда - 431 км/час; время в пути - 10 мин.; цена билета - 40 юаней (примерно 6 долл. США) .

Чанша

Вторая маглев-линия в Китае была построена в городе Чанша. В отличие от Шанхайской линии, она не является высокоскоростной и построена по собственной технологии китайской разработки Длина линии составляет 18,55 километров. Линия имеет три станции и соединяет международный аэропорт Чанша и высокоскоростной железнодорожный вокзал Чанша Южная с промежуточной остановкой Лангли. Конструкционная скорость поездов составляет 120 км/ч, однако в настоящее время она ограничена до 100 км/ч.

Строительство линии было начато в мае года, стоимость проекта составила 4,6 миллиарда юаней (749 миллионов долларов). . Испытания поездов начались 26 декабря года, а с 6 мая года линия открылась для пассажиров и были начаты регулярные перевозки

Пекин

Япония

В 2027 году планируется открытие регулярного движения между городами Токио и Нагоя.

21 апреля 2015 года в ходе испытаний на экспериментальном участке путей протяжённостью 42,8 километра в префектуре Яманаси состав с вагонами серии L0 развил скорость в 603 км/ч.

Южная Корея

Наиболее серьёзные аварии

См. также

Примечания

  1. JR-Maglev , скорость до 581 км/ч с пассажирами на борту
  2. Вакуумный поезд
  3. Проект вакуумного туннельного транспорта ETT (неопр.) (недоступная ссылка) . Дата обращения 15 апреля 2010. Архивировано 7 октября 2014 года.
  4. Высокоскоростной магнитный транспорт с электродинамической левитацией, Гл. 10.1 , 2001
  5. «Vactrain»
  6. Первая космическая миля: орбита
  7. Создатель маглева призывает летать в космос на поезде (неопр.) (недоступная ссылка) . Дата обращения 20 марта 2012. Архивировано 4 марта 2012 года.
  8. What are electromagnetic fields? (англ.) . World Health Organization. Дата обращения 21 ноября 2017.
  9. Chronik des Berliner M-Bahn-Testbetriebs (нем.) .

Zoom -презентация: http://zoom.pspu.ru/presentations/145

1. Назначение

Поезд на магнитной подушке или маглев (от англ. magnetic levitation, т.е. «maglev» - магнитоплан) – это поезд на магнитном подвесе, движимый и управляемый магнитными силами, предназначенный для перевозки людей (рис. 1). Относиться к технике пассажирского транспорта. В отличие от традиционных поездов, в процессе движения он не касается поверхности рельса .

2. Основные части (устройство) и их назначение

Существуют разные технологические решения в разработке данной конструкции (см. п.6). Рассмотрим принцип действия магнитной подушки поезда «Трансрапид» на электромагнитах (электромагнитная подвеска, EMS ) (рис. 2).

Электронно-управляемые электромагниты (1) прикреплены к металлической «юбке» каждого вагона. Они взаимодействуют с магнитами на нижней стороне специального рельса (2), в результате чего поезд зависает над рельсом. Другие магниты обеспечивают боковое выравнивание. Вдоль пути уложена обмотка (3), которая создает магнитное поле, приводящее поезд в движение (линейный двигатель).

3. Принцип действия

В основе принципа действия поезда на магнитном подвесе лежат следующие физические явления и законы:

    явление и закон электромагнитной индукции М. Фарадея

    правило Ленца

    закон Био-Савара-Лапласа

В 1831 году английский физик Майкл Фарадей открыл закон электромагнитной индукции , согласно которому изменение магнитного потока внутри проводящего контура возбуждает в этом контуре электрический ток даже при отсутствии в контуре источника питания . Оставленный Фарадеем открытым вопрос о направлении индукционного тока вскоре решил российский физик Эмилий Христианович Ленц.

Рассмотрим замкнутый круговой токопроводящий контур без подключенной батареи или иного источника питания, в который северным полюсом начинают вводить магнит. Это приведет к увеличению магнитного потока, проходящего через контур, и, согласно закону Фарадея, в контуре возникнет индуцированный ток. Этот ток, в свою очередь, согласно закону Био-Савара будет генерировать магнитное поле, свойства которого ничем не отличаются от свойств поля обычного магнита с северным и южным полюсами. Ленцу как раз и удалось выяснить, что индуцированный ток будет направлен таким образом, что северный полюс генерируемого током магнитного поля будет ориентирован в сторону северного полюса вдвигаемого магнита. Поскольку между двумя северными полюсами магнитов действуют силы взаимного отталкивания, наведенный в контуре индукционный ток потечет именно в таком направлении, что будет противодействовать введению магнита в контур. И это лишь частный случай, а в обобщенной формулировке правило Ленца гласит, что индукционный ток всегда направлен так, чтобы противодействовать вызвавшей его первопричине.

Правило Ленца сегодня как раз и используется в поезде на магнитной подушке. Под днищем вагона такого поезда смонтированы мощные магниты, расположенные в считанных сантиметрах от стального полотна (рис. 3). При движении поезда магнитный поток, проходящий через контур полотна, постоянно меняется, и в нем возникают сильные индукционные токи, создающие мощное магнитное поле, отталкивающее магнитную подвеску поезда (аналогично тому, как возникают силы отталкивания между контуром и магнитом в вышеописанном опыте). Сила эта настолько велика, что, набрав некоторую скорость, поезд буквально отрывается от полотна на несколько сантиметров и, фактически, летит по воздуху .

Состав левитирует за счёт отталкивания одинаковых полюсов магнитов и, наоборот, притягивания разных полюсов. Создатели поезда «Трансрапид» (рис.1) приме­нили неожиданную схему магнитной подвески. Они использовали не от­талкивание одноимённых полюсов, а притягивание разноимённых. Подвесить груз над магнитом несложно (эта система устойчива), а под магни­том - практически невозможно. Но если взять управляемый электромаг­нит, ситуация меняется. Система кон­троля сохраняет величину зазора между магнитами постоянной в несколько миллиметров (рис. 3). При увели­чении зазора система повышает си­лу тока в несущих магнитах и таким образом «подтягивает» вагон; при уменьшении - понижает силу тока, и зазор увеличивается. Схема облада­ет двумя серьёзными преимущества­ми. Путевые магнитные элементы защищены от погодных воздейст­вий, а их поле существенно слабее за счёт малого зазора между путём и составом; оно требу­ет токов гораздо меньшей силы. Сле­довательно, поезд такой конструкции оказывается гораздо более эконо­мичным .

Движение поезда вперед осуществляется линейным двигателем . Такой двигатель имеет ротор и статор, растянутые в полосы (в обычном электромоторе они свёр­нуты в кольца). Обмотки статора включаются поочерёдно, создавая бе­гущее магнитное поле. Статор, укреп­лённый на локомотиве, втягивается в это поле и движет весь состав (рис. 4, 5). . Ключевым элементом технологии является смена полюсов на электромагнитах путем попеременной подачи и снятия тока с частотой 4000 раз в секунду. Зазор между статором и ротором для получения надежной работы не должен превышать пяти миллиметров. Это труднодостижимо из-за свойственной всем типам монорельсовых дорог, кроме дорог с боковой подвеской, раскачки вагонов во время движения, особенно при прохождении поворотов. Поэтому необходима идеальная путевая инфраструктура.

Устойчивость системы обеспечивается автоматическим регулированием тока в обмотках намагничивания: датчики постоянно замеряют расстояние от поезда до пути и соответственно ему меняется напряжение на электромагнитах (рис. 3) . Сверхбыстродействующие системы управления контролировать зазор между дорогой и поездом.

а

Рис. 4. Принцип движения поезда на магнитном подвесе (технология EMS)

Единственной тормозящей силой является сила аэродинамического сопротивления.

Итак, схема движения поезда на магнитной подвеске: под вагоном установлены несущие электромагниты, а на рельсе - катушки линейного электродвигателя. При их взаимодействии возникает сила, которая приподнимает вагон над дорогой и тянет его вперёд. Направление тока в обмотках непрерывно меняется, переключая магнитные поля по мере движения поезда .

Несущие магниты питаются от бортовых аккумуляторов (рис.4), которые подзаряжаются на каждой станции. Ток на линейный электродвигатель, разгоняющий поезд до самолётных скоростей, подаётся только на том участке, по которому идёт поезд (рис. 6 а). Достаточно сильное магнитное поле состава будет наводить ток в путевых обмотках, а те, в свою очередь, - создавать магнит­ное поле.

Рис. 6. а Принцип движения поезда на магнитной подушке

Туда, где поезд увеличивает скорость или идет в гору, энергия подается с большей мощностью. Если нужно затормозить или ехать в обратном направлении, магнитное поле меняет вектор .

Ознакомьтесь с видеофрагментами «Закон электромагнитной индукции », «Электромагнитная индукция » «Опыты Фарадея ».


Рис. 6. б Кадры из видеофрагментов «Закон электромагнитной индукции», «Электромагнитная индукция» «Опыты Фарадея».

15/06/2016

Они будут парить над рельсом, используя изобретенную петербургскими учеными технологию RusMaglev. Поначалу составы сделают грузовыми. В Минтрансе 13 мая состоялось совещание, на котором был представлен проект.


У же подписан договор с инвестором о его реализации. Начаты исследования по другому проекту, использующему принцип Hyperloop - полета поездов в вакуумной трубе. Эти поезда смогут передвигаться быстрее самолетов. Зачем нам все это и когда поезда, наконец, полетят? - узнавал «Город 812».

Один вагон уже взлетел

В конце мая в Петербурге состоялась международная конференция, посвященная созданию и развитию в мире нового, пятого, вида транспорта - маглева. Маглевы, или магнитные поезда, используют принцип магнитной левитации и парят над рельсом, не касаясь земли. Это позволяет развивать скорости, сравнимые с самолетными, и при этом экономить энергию. Такие поезда уже есть в Японии, Китае и Южной Корее. Многие страны начали развивать маглевы.
Петербургские ученые изобрели собственную магнитолевитационную технологию - RusMaglev. На ее основе создан первый в мире проект грузовой магнитолевитационной трассы между Петербургом и Москвой.

Составы, состоящие из контейнеров, будут парить над рельсом, удерживаемые в воздухе магнитной левитацией. Опытный образец летающего вагона массой 32 тонны создан в Петербургском госуниверситете путей сообщения (ПГУПС). Вагон был подвешен в воздухе на высоте 2,5 см от магнитного основания примерно год назад и с тех пор продолжает парить.

За это время левитационный зазор не уменьшился ни на миллиметр! - говорит глава Центра инновационного развития пассажирских перевозок ПГУПС, экс-министр путей сообщения РФ Анатолий Зайцев.

По его словам, для поддержания вагона в воздухе не требуется никаких внешних источников энергии. Он висит сам по себе, удерживаемый только магнитным полем. Такие вагоны, весом до 80 тонн каждый, смогут передвигаться со скоростью 400 км/час и более. Расход электроэнергии у них в два раза ниже, чем, например, у поездов ВСМ, так как нет соприкосновения с поверхностью и не нужно преодолевать силы трения. Магнитная магистраль длиной в 720 км протянется из порта Усть-Луга (Ленобласть) в логистический центр «Белый Раст» в Подмосковье.

Трасса пройдет по эстакаде на средней высоте в 5,5 метра. Строительство будет вестись в несколько этапов. Сначала в районе Гатчины (другой вариант - Шушары) возведут опытный участок пути, на котором отработают новую технологию. Затем путь продлят до грузового порта Усть-Луга, далее возможен заход в порт Бронка. Конечная точка - грузовые терминалы Москвы. Стоимость проекта - 22 миллиарда долларов. Уже подписан договор с инвестором - международной финансовой корпорацией Gordon Atlantic Development Corp, готовой привлечь финансирование для строительства первого русского маглева.

Магистраль должна пройти по территории пяти регионов - Петербурга, Ленинградской, Новгородской, Тверской областей и Москвы. Проблем с собственниками земли для прокладки трассы возникнуть не должно. По словам Зайцева, для возведения эстакады требуются лишь небольшие участки под опоры. В любом случае трасса легко может сделать крюк, чтобы обойти препятствия или подняться над ними.

В мае проект был представлен в Министерстве транспорта РФ. Ученые не просят ни копейки денег из бюджета, но им нужна поддержка - моральная.

Такие масштабные инфраструктурные проекты всегда должны быть под приглядом государственного ока, - говорит экс-министр путей сообщения, инициатор проекта RusMaglev профессор Анатолий Зайцев.

По его словам, правительство должно дать разрешение на создание маглева, а также рекомендовать региональным чиновникам оказывать поддержку проекту. Иначе в российских реалиях он может столкнуться с непредсказуемыми трудностями.

Петербургский маглев должен стать первым звеном в магнитолевитационной транспортной системе страны. Ученые из Уральского отделения РАН сделали анализ обоснования строительства маглева для севера России. Они предлагают открыть контейнерное магнитное сообщение по маршруту Ивдель (Свердловская область) - Индига (Ненецкий АО) протяженностью 1100 км. От Ивдели магнитная контейнерная магистраль может быть проложена на юг до границы с Китаем. По словам Анатолия Зайцева, перевозка одного миллиона контейнеров из Китая в Европу сегодня может принести прибыль, сравнимую с прибылью от продажи всех углеводородов России за год.

После обкатки на грузовых перевозках RusMaglev можно сделать и пассажирским, но при этом грузовые и пассажирские потоки нужно разделять. По расчетам уральских ученых, для перевозки людей по магнитолевитационной дороге выгоднее строить небольшие четырех-пятиместные пассажирские модули.

Русская петля

Министр транспорта Максим Соколов в рамках саммита Россия - АСЕАН заявил, что Россия готова к реализации собственных технологий сверхбыстрых пассажирских перевозок по аналогии с технологией Hyperloop. Так министр ответил на вызов Запада, где проект Hyperloop («Гиперпетля») стремительно набирает популярность.

Суть западного проекта в том, что поезда, или транспортные капсулы, движутся с помощью магнитной левитации в вакуумной трубе, развивая скорость до 1200 км/час. Идею предложил американец Элон Маск (основатель компаний SpaceX и Tesla Motors), после чего сразу несколько компаний взялись за ее воплощение, самая активная из которых - Hyperloop One.

В мае этого года в Неваде прошли первые тестовые испытания капсулы Hyperloop. Секрет популярности проекта - в его заявленной дешевизне и обещанной низкой стоимости билетов на проезд.

В России для изучения американской технологии Hyperloop создана совместная рабочая группа из специалистов РЖД и компании Hyperloop One. Однако пока, по словам российских экспертов, американцы представили лишь тележку, которая ездит по трубе с помощью обычного линейного двигателя.

Над проектом отечественного сверхбыстрого поезда сегодня трудятся специалисты из разных регионов страны. Ученые из Сибирского отделения РАН сделали предварительные расчеты для вакуумного поезда на основе магнитолевитационной, вакуумной и сверхпроводниковой технологий. По их оценке, диапазон скоростей локомотива в вакуумной трубе может составлять от 500 до 6500 км/час. Но пока нерешенными остаются проблемы волнового сопротивления, аэротермодинамики и другие.

Несложно заключить левитирующий вагон в трубу и откачать оттуда воздух - если уж говорить примитивно. Но кто-то должен вложить средства в такой проект, - объясняет он.

По мнению петербургских ученых, строительство вакуумной трубы может оказаться самым дорогим из всех рассматриваемых вариантов сверхбыстрых поездов. В настоящее время в ПГУПС ведутся работы по экономическому моделированию, чтобы понять, какой из проектов магнитолевитационного поезда выгоднее: вакуумный или эстакадный (проект Петербург - Москва эстакадный).

По словам президента Международного совета по транспортным системам Маглев (The International Maglevboard) профессора Йоханнеса Клюшписа, к проекту Hyperloop многие специалисты относятся с недоверием. Во-первых, сомнительна его экономическая перспектива, так как строительство обойдется намного дороже, чем заявлялось в начале. Во-вторых, велики риски для жизни и здоровья людей в случае разгерметизации трубы. В-третьих, пассажиры просто не захотят путешествовать таким странным способом.

Людям не понравится сидеть в капсуле в замкнутом пространстве, не имея возможности встать и выйти. Я бы не стал инвестировать в такой проект для пассажиров. Но он может быть успешен для грузовых перевозок, - полагает профессор Клюшпис.

Городской маглев

Сегодня лидерами по внедрению маглева являются Корея, Япония и Китай. По всему миру было запущено порядка десятка магнитолевитационных транспортных проектов, но успешны лишь три из них.

В Китае действует линия протяженностью 30 км, связывающая Шанхай и аэропорт. В Японии, в Нагое, была построена трасса длиной в 9 км к выставке Expo-2005. В Южной Корее в феврале 2016-го открылась магнитолевитационная дорога протяженностью 6 км - от аэропорта до базы отдыха Yongyoo-Mui. В Германии, США, Испании, Канаде, ОАЭ, России проекты строительства магнитолевитационных линий находятся на разных стадиях реализации.

По словам профессора Клюшписа, во многих странах маглев сталкивается с противодействием со стороны бизнеса, правительства и общества. Например, в Германии проект маглева провалился из-за давления со стороны железнодорожников, которые не хотели терять монополию на рынке.

В Японии расширение маглева тормозится из-за протестов граждан. Они боятся, что новая магистраль испортит экологию: создаст шум, вибрацию, электромагнитное и даже радиационное излучение (это устойчивый, ничем, как уверяют эксперты, не обоснованный страх японцев).

Корейцы протестуют против строительства трассы, так как опасаются, что это приведет к подорожанию земли и повышению арендных ставок вблизи новой дороги.

В России, по словам профессора Клюшписа, есть поддержка маглева со стороны руководства страны, и даже железнодорожники положительно относятся к проекту. Однако неофициально эксперты говорят, что РЖД готово поддерживать только грузовой маглев. А будущее пассажирского сообщения в РЖД однозначно связывают с высокоскоростными магистралями (ВСМ). При этом некоторые ученые называют технологию ВСМ догоняющей, морально устаревшей и более затратной, чем магнитолевитационная.

Чтобы не дразнить монополиста РЖД, сторонники магнитолевитационных систем предлагают развивать маглевы в качестве городского транспорта. По словам Анатолия Зайцева, сейчас ведутся переговоры с властями Петербурга, Москвы и Волгограда, проявившими заинтересованность в появлении нового вида пассажирского сообщения. Маглев выигрывает по многим параметрам, если сравнивать его с традиционным городским транспортом. Строительство маглева обходится в 3-4 раза дешевле, чем метро. Расход электроэнергии у него ниже, а провозная способность выше, чем у подземки. Маглев экологичен. Из-за отсутствия контакта с поверхностью (колеса не стучат по рельсам) от него почти нет шума, вибрации и пыли. Нет выхлопных газов. Поэтому маглев идеален для мегаполисов с плотной застройкой.

Сегодня в Смольном на рассмотрении находятся несколько проектов городского маглева. Линия от Дворца конгрессов (Стрельна) до метро «Обухово», с ответвлением в жилой комплекс «Балтийская жемчужина». Линия от метро «Рыбацкое» до Колпина и другие.

У нас в России достаточно мозгов, чтобы все это построить. Мы не просим бюджетного финансирования, потому что когда привлекается бюджет, обязательно кто-нибудь что-нибудь отпилит, - говорит экс-министр Зайцев, готовый найти инвесторов на предложенные проекты.

Основная проблема, почему маглев массово не строится по всему свету, - это очень дорого. Если удастся удешевить технологию, тогда он завоюет мир, - уверен профессор Клюшпис.

Hyperloop изобрели в России 100 лет назад

Первый проект движения поездов в вакууме был предложен в России еще в 1911 году российским ученым Борисом Вейнбергом. По его замыслу, внутри трубы, из которой откачан воздух, должна была перемещаться капсула. Она приводилась в движение с помощью «электромагнитной пушки» и теоретически могла развивать скорость 800-1000 км/ч. Ученый даже провел опыты в Томском технологическом институте по перемещению капсулы в трубе, но воплощению идеи помешала Первая мировая война.